
ODS Architecture
An Overview



System Metaphor

Extract Transform Load

Users via 
UI(s) / API(s)

 



System Metaphor

Extract Transform Load

Users via 
UI(s) / API(s)

Synchronous 
Requests

Asynchronous 
Flow



Architecture Requirements
● Scale ETL phases individually
● Failing ETL jobs are not an exception => don’t propagate faults
● Unpredictable tech stack (esp. sandboxing for transform phase)
● Multiple repositories with different licenses due to open source strategy
● Eventual consistency is ok since ETL phases are asynchronous

Microservices (light)

● Not yet focus on independent deployability
● Not yet battle-tested towards scalability 



Extract Phase



Transform Phase



Load Phase



Notification Phase
● Downstream notification mechanism

○ Webhooks
○ Slack
○ Google Firebase Notifications (=> mobile push notifications)

● Architecture / API similar to other services
○ Synchronous configuration via RESTful API
○ Asynchronously triggered by domain-based AMQP events



Questions?
https://github.com/jvalue/open-data-service

https://github.com/jvalue/open-data-service

